Combining techniques to refine item to skills Q-matrices with a partition tree
نویسندگان
چکیده
The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree that combines the suggested refinements of three known techniques from the literature. Each technique is given as input a Q-matrix, that maps items to skills, and student test outcome data, and outputs a modified Q-matrix that constitutes suggested improvements. We test the accuracy of the partition tree combination techniques over both synthetic and real data. The results over synthetic data show a high improvement over the best single technique with a 86% error reduction on average for four different Q-matrices. For real data, the error reduction is 42%. In addition to the substantial error reduction, the partition tree refinements provide a much more stable performance than any single technique. These results suggest that the partition tree is a valuable refinement combination approach that can effectively take advantage of the complementarity of the Q-matrix refinement techniques. It brings the goal of using a data driven approach to refine the item to skill mapping closer to real applications, although challenges remain and are discussed.
منابع مشابه
A Partition Tree Approach to Combine Techniques to Refine Item to Skills Q-Matrices
The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree that combines the suggested refinements of three...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملA tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings
Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q co...
متن کاملA Matrix Factorization Method for Mapping Items to Skills and for Enhancing Expert-Based Q-Matrices
Uncovering the right skills behind question items is a difficult task. It requires a thorough understanding of the subject matter and of the cognitive factors that determine student performance. The skills definition, and the mapping of item to skills, require the involvement of experts. We investigate means to assist experts for this task by using a data driven, matrix factorization approach. ...
متن کاملEffect of Composition on Release of Aroma Compounds
The effect of oleic acid (5 and 10% v/v) and xanthan gum (0.5 and 1% wt) on partitioning and retention of ethyl acetate and diacetyl from two matrices with a different composition was investigated by applying static head space gas chromatography. Two matrices with different composition have been developed: one containing carbohydrates (xanthan gum) and in the second one, called co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015